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ABSTRACT

The structure and behavior of barotropically unstable

and stable wave disturbances in the vicinity of a zonally

varying easterly jet are studied numerically with a

linearized barotropic vorticity equation on a 3-plane. The

easterly jet is approximated by a Bickle y jet with a slow

zonal variation. The numerical results are also compared

with a simple mechanistic analytical model using the local

phase speed and growth rate conce pts. The results are

grossly similar in several respects to that expected from

the parallel flow theory of barotropic instability , however ,

the resultant structure of the waves causes a spatial growth

rate greater than predicted by the local growth rates

computed with a parallel flow model . In the stable region ,

the structure leads to strong d ynamic damping. When a

uniform advective velocity is added to a variable mean flow ,

the differences between the behavio r of the computed waves

and that im plied by the parallel flow theory are somewhat

reduced. The waves remove kinetic energy from the mean

flow and most of this energy is removed on the downwind side

of the jet. The computed structure and behavior of the waves

have a number of features that resemble those observed in

the v i c i n i t y  of the upper t ropos phere  e a s t e r l y  je t  dur ing

th e summer monsoon.
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I. INTRODUCTION

In the Northern Hemis phere summer , a moderately strong

easterly jet exists south of the Tibetan high near the 200 mb

level (Krishnamurti , l97la , l97lb). Synoptic-scale moving

dtsturba nc es occur at the level of the jet , and it appears

that  these d i s t u r b a n c e s  a r i se  from b a r o t r o p i c  i n s t a b i l i t y  of

the mean f l ow . The j e t  con ta i ns  reg ions  of la rge  vor t i  c i ty

grad ien ts  where  the n e c e s s a r y  c o n d i t i o n  for b a r o t r o p i c

i ns tab i l i t y  is somet imes  l o c a l l y  s a t i s f i e d .  If the obse rved

disturbances were the result of barotropic instability , they

would extract energy from the mean zonal flow and the plane-

tary-scale waves , since the latter combine with the zonal

flow to give the large vorticity gradients south of the

Tibetan high. In fact , Kanamitsu et a l .  ( 1 9 7 2 )  have  shown

that wavenumbers 6-8 in the wind spectrum in the region

between l5S and 15N receive energy through barotropic

interaction with the zonal and wavenumber 1 flow.

Furthermore , K ris h namurt i (1971a ) studied the wave number

spectra of the meridional wind component for selected

tropical latitudes and he found a peak in the spectra near

wavenumbers 6-8 at latitudes near the easterly jet.

Colton (1973) studied barot ropic interactions between

quasi -s tationary long waves and transient synoptic waves

using a semi-spectral numerical model. His long waves were

forced with a specified divergence field following the

12 
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diagnostic model of Holton and Colton (1972). Results from

a long term integration of his model reproduced several

features of the upper tropospheric general circulation. In

particular , his model simulated the disturbances observed by

Krishnamurti (197la , lg 7lb) in the vicinity of the easterly

jet. His model showed that wave disturbances entering

upstream of the easterly jet regime grow and increase their

speed and wavelength as they approach the longitude of the

jet velocity maximum , achieve their maximum amplit ude a

cons iderab le  d i s t a n c e  downs t ream of the je t  maximum , and

even tua l l y  decay as the d i s t u r b a n c e s  move out of the e a s t e r l y

je t  regime . Furthermore , the high and low p r e s s u r e  cen te rs

of these t r a n s i e n t  wave  d i s tu rbances  occur  on the w i n g s  of

the cent ra l  ax is  of the j e t  s t ream.  Co l ton  conc luded  that

the transient disturbances are due to scale interactions

t nvo lv tng sho r t - t e rm ba ro t r op i c  instability .

In both K r i shnamur t i ’ s o b s e r v a t i o n a l  and Co l t on ’ s

numeri ca l s tud ies , the zonal  va n a t ion  of the je t  appa ren t l y

has s i g n i f i c a n t  e f f e c t s  on the dynamic  behav i  or of the

t rans ien t  d i s t u r b a n c e s .  Th is  study is an a t tempt  to under-

s t a n d  b e t t e r  such effects. This is a linear study , therefore ,

the results can onl y be suggestive of the complicated nonlinear

behavior of the real atmosphere. However , since the ampli-

tudes of synoptic waves are generally of smaller magnitude

in the tropics than in middle and higher latitudes , a linear 

~~- .. —.---.-.. —-‘-

,
.. ‘



Fr,— .— — —‘-“III

stability approach shoul d be i r s:n~~ 1~ 
j~ pr o < j - ~a~ jo n to

the real atmos ohere.

This study is an extension o~ the linear b a r o tro p i c

i ns tab i l i t y  theory d e v e l o p e d  ove r  the yea rs  by various

investigators . The extension of this study is the zonal

variation of the basic fl ow . Rayleigh (1893 , 1913) d e v e l o p e d

the concept of hydrodynamic instability and Kuo (1949)

extended this concept to a rotating atmosphere by including

L the beta term . Since then , many investigators have studied

the stability of barotropic zonal flows. Kuo (1949 , 1951),

Lipps (1962), Yanai and Nitta (1968) investigated barotropic

instability of parallel symmetric westerly jet flows. Nitta

and Yanai (1969), Yamasaki and Wada (1972), and Kuo (1973)

extended this theory to parallel symmetric easterly jet flows.

Lipps (1965 , 1970) and Kuo (1973) further extended the concept

to parallel asymmetric b arotropic zonal flows. In general ,

when the necessa ry  c r i t e r i o n  for l i nea r  b a r o t n o p i c  i n s t a b i l i t y

is satisfied , normal mode solutions for barotropic unstable

waves have certain properties: 1) they exist w i t h i n  a range of

intermediate wavelengths , 2) they have a latitudinal tilt

opposite to the shear of the barot ropic zonal wind and this

t i l t  c rea tes  momentum f l uxes  w h i c h  r e d i s t r i b u t e  the k i n e t i c

energy from the mean zonal flow to the disturbance , 3) their

phase speeds in a westerly jet are less then the speed of the

maximum westerly wind , and 4) their phase speed in an
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eas te r l y  je t  may be g rea te r  than the maximum easterl y wind

(Pedlos ky, 1964; Yamasaki and Wada , 1972). In this case ,

however , the growth rates are generally very small.

Nit ta and Yana i  ( 1 9 6 9 )  m o d i f i e d  the concept  that

uns tab le  so lu t i ons  e x i s t  only w i t h i n  an intermediate range

of wavelengths. For an easterly sinusoidal jet flow , they

found a distinct short wave cLt-off but no apparent long wave

cu t -o f f  for i n s t a b i l i t y . Y a m a s a k i  and Wada ( 1 9 7 2 )  m o d i f i e d

this by show ing  that  the long w a v e  cu t -o f f  is dependent  on

the strength and sharpness of this sinusoidal easterly jet.

For very strong and sharp velocity profiles , the long wave

c u t — o f f  approaches  i n f i n i ty.  For r e l a t i v e l y  weak  but s t i l l

uns tab le  p ro f i l es , a finite long wave cut -off exists for

this jet. Kuo (1973) referred to this long wave cut-off

regio n as the modified Rossby regime in his numerical study

for an easterly Bickley jet.

All these stability studies have used parallel baro —

tropic flows , i.e., there is no zonal variation in the basic

flow . Lorenz (1972), however , investigated primarily by

anal ytical means the barotr opic instability of a flow pattern

which varies with longitude . The basic flow is a neutral

Rossby wave superposed on a uniform westerly flow . Essen-

tially, this flow depicts the progression of large scale

waves embedded in a westerly current. Zonal flows of mid-

latitudes are generally considered to be barotropically

stable , but Lorenz showed that a uniform zonal flow together

15 
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with superposed neutral Rossby waves may be unstable with

re spect  to fur ther  pe r tu rba t i ons .  Lorenz  found that the

growth rate of the perturbations is comparable to the growth

rate of the errors of large numerical atmospheric models.

Based on this , Lorenz suggested that barotropic instability

may be partl y responsible for the unpredictability of the

real atmosphere.

In addition to the regular or normal mode eigensolutio n s ,

th ere are “singular ” or “ continuum ” mode solutions which

have been discussed by Rayleigh (1913). , Case (1960) , Ped losky

(1964), and Yanai and Nitta (1968). These “ singular ”

solutions correspond to continuous ei genva lues of phase

velocity Cc) which are equal to the basic flow , U(y), som e-

where in the zonal current. Since these “ singular ” solutions

are continuous , there is an infinite number of solutions.

Case showed that these continuum modes are needed to form a

complete  set  of s o l u t i o n s .  He a l s o  showed tha t  the disturb-

ance formed by the sum of the continuum modes has a

y-structure tilt in the same sense as the basic flow shear

and that  it u s u a l l y  decays as l/ t  or f a s t e r , where  t repre-

sen ts ti me.

It is clear that in the real atmos phere , ‘mean low s ”

var y both in space and time. They are neither p u re~y

barotropic nor purely baroclinic , and in i n c l u d i n g  both

effects in a linear stability study is a very dif i c u l t  task .

Most of the investigators have examined the d ynamic

L _ 16
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instability problem by studying each effect separately.

This study , h owever , focuses only on barotropic instabili ty .

~4e hope that a be t ter  unders tand ing  of the kind of upper

tropospheric waves studied by Krishnamurti (l97la , 197lb)

and Colton (1973) near the easterly jet can be achieved by

studying the behavior of barotropic waves in a reg ion of a

variable mean easterly wind. We are especially interested

in the situation where the waves move into and out of baro-

tropically unstable regions. Therefore , the objective of

this work is to determine the dynamic stability behavior ,

the s t ruc tu re  and the ene rge t i cs  of b a r o t r o p i c  w a v e s  propa-

ga t ing  in a zonally varying mean wind .

With a very simp le analyti cal model , Pedlosky (1976)

stud ied the f in i te  ampl i tude dynamics  in a z o n a l l y  va ry ing

baroc l i r i i c  cur rent .  The mean f l ow of h is  model changes

abruptly from a weakly unstable regime with a constant growth

rate to a stable regime downstream. He found that disturb-

ances may propagate into stable regions substantially

undiminished , retaining a considerable memory of its history

in a locally unstable region .

The mean flow in our barotropic study, however , has a

full downstream variation such that the stability of the

mean flow ranges from locally strong instability to locally

strong stability .

17 1



!~ TII1IT~

Our approach is as follows : firstl y, we d evelo p a

numer ical model based on the linear non- divergent barotropic

vorticity equation on a beta-plane incor porating the dynamics

of transient ba ro tropic waves in a regio n of variable mean

wind. The ~~~~ “i~ d is an easterly hyperbolic secant-

squarred (Bick .d the mean meridional wind is derived

in such a way that che nean flow is non-divergent. Secondly,

using th 4 s numer ica l  model , we conduct selected case studies

to determine fundamental dynamic stability and energetic

properties of these barotropic waves. Thirdly, we compare

the results obtained from the numerical model with the

parallel flow theory . This is done by constructing a simple

mechanistic analytical model which incorporates the local

stability concept of the parallel flow theory . This compari-

son gives us fur ther i ns i gh t s  on the e f f ec t  of the v a r i a b l e

mean wind.

The domain of the numer ica l  model c o n s i s t s  of an open

channel w i t h  r ig id  w a l l s  at the north and south b o u n d a r i e s .

The basic flow is a slowly varying easterly Bickley jet.

A pe r iod ic  fo rc ing  is app l i ed  on the i n f l o w  or eas te rn

boundary such that periodic perturbations are generated from

th is boundary in to the channel  f low w h i c h  rep resen ts  w a v e s

moving into the region from the east. The western boundary

condition allows the waves to move out of the channel. As

the waves move through the region , they grow or decay in

relation to the local stability pro p erties of the mean flow ,

whereas at each point the fields vary periodically.

LL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



II. NUMERICAL MODEL

A. GE NERAL FORMULATION

The governing equations are the barotropic vorticity

equation using a beta (
~

) plane approximation:

. +  uH.+ ~~~~ $ v  = Q - ~~ (2.1)

and the non -divergent continuity equation

I~. + ~~~~ 0 (2 2)ax ay

where

- 3 v auC = — - . (2.3)

Here ~ is the north -south gradient of the earth’ s vorticity

and is g iven by its value at 100 l a t i t ude .  Q is a forcing

func t ion  rep resen t i ng  n o n - b a r o t r o p i c  e f f e c t s  w h i c h  is

required to maintain the vorticity field , ~~ is a frictional

c o e f f i c i e n t .  S ince  the f low is t w o - d i m e n s i o n a l  and non-

d i ve r gen t , a s t r e a m f u n c t i o n  (~p) is de f i ned  such  that

u = - , v = 
~~~~~~ , (2 .4)

thus

C = . ( 2 . 5 )

Here u and v are the velocities of the flow in the x and y

direction , respectively. Equation (2.1) now becomes

- . 

~~~~ 
+ ~~~~~~ + 3 -

~~
-

~~
- = Q - D f v ~ (2 .6)

19
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The governing equations are linearized by separating

quantities into the following form:

~i(x ,y,t) = ~(x ,y) ÷ ~ti ’(x ,y,t) . (2.7)

Here the bars are the b a s i c  s t a t e  v a r i a b l e s  and the pr imes

are the pe r tu rba t i on  q u a n t i t i e s .  The mean s t r e a m f u n c t i o n

~(x ,y) satisfies the mean vorticity equation when a non-

baro t rop ic  source  term is added .  The b a s i c  s t a t e  e q u a t i o n

is therefore

- _ _ _  + ~~~ + = - D~ 7~~ , (2 .8)

wh ich  is n o n - l i n e a r .  ~ is needed to m a i n t a i n  the b a s i c

vorticity field in steady state. The resultant linearized

pe r tu rba t i on  equa t ion  i s :

~ 7 2 4~ - ~~ 7 ~~~
‘ 

+ .L~. ~~~ - .i ~ _ ~~~
ay ax ~x ~y ~y ax

-s- -
~
-

~~
— ~ v 

+ = - D ..2 , (2 . 9 )
~x ~y ix f

The a d v e c t i v e  terms in ( 2 . 9 )  can be w r i t t e n  in J a c o b i a n  form

such that

_ _ _ _  = - J(~ ,v2~ ’)- J ( ’~ ’ ,~~
2 ) - - D f V 2 ’~ ’ ( 2 . 1 0 )

where (2.10) is a Poisson equation with the tendency of the

perturbation stream — fun ct ion as the dependent variable . T n e

right side of (2.10) is the forcing or non -hom oge n eo u s Dart

20
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of the P o i s s o n  p rob lem for a~~’ / a t .  The no r t h - sou th  boundar ies

are rigid walls where

= 0 , ( 2 . 1 1 )

and

0 . (2.12)

The inflow or eastern boundary conditions are specified such

that

~‘(O ,y,t) = A(y) sjn (wt) + 5 ( y )  c o s ( w t ) ,  (2.13)

and

= A(y )~ cos(~ t) - 5 ( y ) ~ s i n (~ t ) ,  (2 .14 )

where ~ is the specified frequency of the forcing. A(y)

and B(y) are the y—structure coeffi ci ents of the forcing

which are described in Chapter IV . The pur pose of this

forcing is to introduce waves into the region from the east.

The other condition on the inflow boundary is

2 
_ _C ’(O ,Y,t) = v ~~~

‘ = - k 2 ’V ’ + . ( 2 . 1 5 )
ay

Th is  e x p r e s s i o n  f o l l o w s  because  it is expected that ~~~
‘ w i l l

have a spatial variation of the form elkx . The determination

of k is discussed later. This boundary forcing is expected

to lead to periodic wave disturbances throughout the domain

after a certain time period of numerical integration . It

turns out that the outflow boundary conditions are crucial

21
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for a t t a i n i ng  th is  pe r i od i c  s ta te , b e c a u s e  the w a v e  d is turb-

ances must be able to pro pagate freely out of this boundary .

Therefore , a Sommerfeld radiation condition (Pearson , 1974)

for both the tendency and the vorticity is used to approxi-

mate this mechanism on the outflow boundary :

h (a—) = - Cr ~~ 
(H—)

~ 
and (2 .1 6)

— aC ’ 2 17at cr ax

Here Cr is a s p e c i f i e d  c o n s t a n t  phase v e l o c i t y . Pearson
0

( 1 9 7 4 )  sh owed that  the Somme r fe ld  r a d i a t i o n  c o n d i t i o n  is a

c o n s i s t e n t  boundary cond i t i on  for numer i ca l  mode ls  of i n i t i a l

value systems admi tting dispersive waves. The fundamental

problem with most outflow boundary conditions is the reflec-

tion of incident waves from a boundary back into the interior

region. This is usually disastrous for numerical models

admitting dispersive waves. Pearson showed that , if C
r 15

chosen judi ci OuS l y, the iongwav es move smoothly through the

boundary . For shor t  w a v e l e n g t h s , howeve r , an area w i t h  a

la rge  c o e f f i c i e n t  of v i s c o s i t y near  the boundary is o f ten

requi red to he lp  con t ro l  the r e f l e c t i o n  p r o b l e m .  A c c o r d i n g

to Pearson , the amount of damping is proportional to the

wave n umber .  A Matsuno f i n i t e  d i f f e r e n c e  scheme is used in

our numerical model. This scheme has a tende ncy to damp the

short waves thus we need onl y to use a relativel y small

coeffi ci ent of friction to control wave reflection at the

22
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ou t f l ow  boundar y . A f r i c t i o n  c o e f f i c i e n t  of D
~ 

= .l5xl O 5

sec~~ is used which is e quivalent to an e - folding decay time

of approximately 7.7 days.

B. ZONALL Y VARYING BASIC FLOW

The basic velocity field is an easterly Bickley jet

defined by

~(x ,y) = - U(x) sech 2(d-(-~l
) - U 0 = - 

~~~~~~ . (2.18)

Here d(x) is a characteristic length scale of the jet and is

related to the half width d(x) (Kuo , 1973) by

~(x) = - 1 .76 d(x) . (2.19)

U(x) is the velocity of the jet at y=O and U 0 is a constant

velocity . The basic flow streamfunction ( )  is specified

to be constant at both the south ern (y -D) and northe rn (y=~ )

boundaries as follows:

~(-o) = C 1 where (2.20)

~(o ) = C 2
(2.2 1)y y .

(x ,y) = U(x) 
fD 

sech 2(d (~~)
)dy + U 0 f dy +

and

~(D) = U (x ) f s e c h 2 (
d (~~

- )dy + U 0 J dy

+ (-D) = C 2. (2 .22)

I
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For a symmetric jet profile about y=O , C 1 
= C 2. Equations

(2.21) and (2.22) are conveniently simplified :

~(x , y )  = U (x)d (x) 
~
tanh( d(~~)

) + t a n h( d(~~) ) }

( 2 . 2 3 )
+ U0y + U0D ÷

and

(D) = 2U(x )d(x) tanh( d(~ )
) + 2U 0D + 

~~~(~~~~~~~~ ) . (2.24)

From (2.23), the jet velocity at y=O is give n by:

[;(D) - 2U D - ~(-D) 1 DU(x) = [ 2d?x) coth 
~d(xJ~ 

(2.25)

Therefore , if d(x) varies slowly in x , then , so does the

basic flow. The x -v ariation for the characteris tic length

s c a l e  is  g i v e n  by

(x-~ )
~85O km + 350 km ~. cos [2-i — 

~~ ] , x ‘ x
d = .

~ L 
— 

. (2.26)

~ l 2 O O  km , x < x~ 
F

Here is the lo~ git i j de wher e the x-var i at i on of the cosine

function starts and L is the wav elength of tnis variation .

Figures 1- 3 show the basic fields of streamf u nction

(x ,y), zona l velocity i~(x ,y) and vorticity ~(x ,y),

r e s p e c t i v e l y .  Here L is se t  to 43 ,000 km. The doma in  is

40 ,125 km long and 4 ,000 km w i d e  (D = 2 ,000 km). At y O ,

the basic zonal velocity is - 15.51 m sec~~ at the inflow

boundary (x = 14 ,625 km) incre asing slowl y to a maximum val ue

4
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of — 30 m sec at x=O . From this longitude the central

velocity slowl y decreases downs tream to a m i n i m u m  i3 lue o~

-13 .4 m sec ~~ at x = -21 ,375 kn. Between this lon ~~i ~~de ~nd

the outflow boundary (x = -25 ,500 km), the basic row is

paral lel. From Eq . (2 .26) , we note that th e c h a r a c t e r i s t i c

l ength  s c a l e , d(x), varies between 500 km at 
~

( x
~~

O ) m~~x and

1200 km at



—

III ... LOCAL STAB IL ITY OF BASIC FLO W

The local growth rate of the variable mean flow of the

numerical model is fi rst determined by a parallel flow (i .e. ,

no x— variation) numerical model of Williams et al . (1971) in

order to gain some insight on the stability characteristics

of the mean flow . This model is hereafter referenced as the

parallel flow model. By setting ~~/;x = 0 in (2.9) of the

numerical model , the governing equation of this model is

+ of-. + D~ J ~~~ ÷ [5 - 
4] 

~~

-

~~

-- = 0 . (3.1)

The symbols of (3.1) have the same meaning as the numerical

model of Chapter II , except that the basic flow is given by

~(y) = - U sech 2(~~) , (3.2)

where U is a specified constant that scales the magnitude of

the central velocity of the Bickley jet (y=O). The character-

istic length d is also a specified constant . Assuming that

all perturbation quantities are periodic in x , Eq. (3.1) is

finite Fourier transformed in x with wavenumber k , and is

solved as an initial value problem . This approach g ives the

phase speed , growth rate , and the wave structure of the most

unstable mode . It is convenie nt to write ~~
‘ in the following

form:

~‘(x ,y,t) = A(y, t) cos(kx) + B(y, t) sin (kx). (3.3)

.—.—~ ~~~~~~~~~~~~~~~~ ~~~~
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Equa t ion (3 .3)  is s u b s t i t u t e d  in to  ( 3 . 1 ) ,  and the coefficients

of coskx and sinkx are separately set equal to zero. The

coskx term g ives:

- k2]}~
. = - k[~~ {

~~
_i

2. - k2} + fs -

2 (3.4)r3 - 2
- D fL~~~ 

- k JA ,

and the sinkx term g ives:

- k
2
]}~~ 

= k[~ 

2 

k 2}+  ~B -

- Df[1—7 - k ]B .  (3.5)

The boundary c o n d i t i o n s  are

~p ’(x ,O ,t) = ~‘(x ,-D ,t) = 0. (3 .5)

Equations (3.4) and (3.5) are written in f i n i t e  di~~~erc i~ e

form such that the second derivative with respect to i

typic a~~ var:a;~ e A  is o ted as 

(3. 7)
ay

where j is the y— grid index and ~y is the distance between

grid points . The model has 32 grid intervals and ~y is set

equal to 125 km (the width of the channel is 4000 km). This

y-grid structure is the same one used in the complete

numerical model. Centered time differences are used for all

quantities except those involving friction. The time step

~~~ 30

~ 
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(st) is set to 1 hour. The friction terms are evalu ated at

the previous time step in order to insure linear computa-

tional stability (Haltiner , 1971). The integrati on begins

with a forward time step. The boundary conditions (Eq. 3.6)

become

A = B = 0 at y = +0 .  ( 3 . 8 )

Equations (3.4) and (3.5) are solved for the tendencies by

the exact method of Richtmyer (1967). These equations can be

solved numerically as a function of ~~~, D f~ ~(y), and k for

any initial conditions. These equations are integrated until

their solution becomes exponential in behavior . The basic

flow ~(y) is specified for a number of selected long itudes

of the variable mean flow of Fig. 2. The wavenumber k is

also specified for each integration.

In general , these equations have a set of discrete normal

mode solutions as well as a continuous spectrum of solutions

(Case , 1960 , Pedlosky , 1964 and Yanai and Nitta , 1968). Onl y

the normal mode solutions can g ive si gnificant growth and the

most unstable mode wi l l  dominate after a sufficient period

of time .

This parallel flow model is numerically integrated to

150 days. The initial disturbance amplitude has a north —

south structure with no tilt. The eigensolution obtained

includes wave structure of the most unstable mode , and its

growth rate and phase speed. By selectively testing different

wavelengths , the most unstable wavelength is determined.

- ---.---• _ _ _
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Figures 4-7 illustrate the eigensolutions of the most

unstable discrete mode for the selected jet pr ofiles. Since

the jet flow and the wave disturbance are both symmetric

about y=O , only the lower half of the y domain is shown .

It is interesting to note that the eigensolution amplitude

has three maxima , one at y=O and one on each wing (only lower

w fng is shown) of the jet approximately 600-800 km from y=O.

It is apparent that when the jet is relatively sharp (i.e .,

d ~ 700 km), the central maximum predominates. When the jet

is relatively smooth and broad (i .e., d ~ 800 km), the

maximum on the wings predominates. Figure 8 shows the

growth rate (n) corresponding to the most unstable wave-

lengths CL) as a function of x based on the parallel flow

model . In a local stability sense , the most unstable

wavelengths range between 3650 km at x=0 where the jet has

its maximum velocity and 4600 km near the inflow and outflow

regions of the jet regime . We observe that locally the

greatest instability based on both tilt and growth rate is

indicated where the jet achieves its max imum central velocity

(
~ 

= -30 m sec~~ ). This parallel flow model can only give

the most unstable discrete mode; it can not depict any

dynamic dam ping. This is reflected in Fig. 7(b) which

corresponds to x = — 22 ,500 km , outside the u nstable region.

Here the solution exhibits essentia lly no tilt and the growth

rate as ymptotically approaches the linear frictional damping

rate. T~.is is further discussed in Cha pters V I and V II.

_ _  • 
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These results are consistent .-i ith those calculated by

Kuo (1973) in a numerical stud y of a parallel B ickley jet

and , in a local stability sense , may be viewed as a first

approximation of the be havior of moving waves within a

zonally — varying mean wind.
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IV . FINITE DIFFERENCE EQUATIONS

The governing Eq. (2.9) of the complete n umerical model

is written wi th the advective terms in Jacobian form:

= — J(~~,7
2
~ ’) — J(~~’ ,72 ) — - D 7

2.4~t , (4 .1)at ~x f

where

aa ~b ~a 3bJ(a ,b) = ~~
-

~~
- ~~ - ( 4 . 2 )

for any two sca lar quantities a and b. The Arakawa (1966)

finite difference approximation for the Jacobian is used .

This scheme conserves both the mean square vortici ty and the

mean kinetic energy.

We de f ine  the tendency  of the d i s t u r b a n c e  s t r e a m f u n c t i o n

by

. 1  t
Tt = 

[

3 ’ ~) ]  (4  3)• i,j~~ 3t  ‘

where superscript t is the current time , and subscripts i

and j refer to the x and y grid points , respectively. In the

followin g finite difference equations , ~t is the time step

and is set equal to one hour. ~x and .~y are the x and y

g r id  po in t i n t e r v a l s , res pectively. Equation (4.1) is written

using the ‘latsuno or Euler -backward finite difference scheme:

= - 
~~~[~~~~~~~ 7

2 .
~~~ ’]  -~~~~~[~~ 7

2:J

( 4 . 4 )
r , t t -

~

— ~ 
‘
~~ - l  

‘~~ 

— 1 — 1  
~ D 2

21x J fV j ,~ 
‘

~~~~~~~~~~ , .~~~~~~~ .



~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~

= + T~~~ 4t 1 (4.5)

V
2T1 

* 

= ~~~~~~~~~~~~~~~~~ - 

~~~~~~~ ~2 ;j

- ~~~
[

1+ l ,J ~~~~~~~ ] D ~ 2 , (4.6)

t+~~~~
1- I- *I -_.I — . 1

- _
~) .  . I .  -

1 ,3  1 , .]  1 ,3

The f i n i t e  d i f f e r e n c e  form for the La p lac i an o f th e ten d enc y

is given by: (4.8)

2 t 
= 

T~ +1~~ - 2T~~~ + Ti~~~+l + 
T~~~ +~ - 2T~~~ + T~~~~ 1

V 
~~~~ 2 2

and for the Jacobian terms , it i s g i v e n  by:

- t
= 4~ x~ y [~~i+l , j  - 

~i -l ,~~
) (

~~~ , j+l 
- 

~i ,j-l~ ~
(4 .9)

I- - ‘I I i t . .J t  -.
- 

~~~~ i ,j+ l  
- 

~i ,j- l 1 
~~i + l ,j 

-

1 - t t
= 

44x4y [~~i+ l ,j~~~i+l ,j+l 
- 

~i+l ,j-l~ 
+ (4.10)

— ( _
t t 

— 
t ) 4

i - i  ,j ~i- l ,j+l ‘i-l ,j-l .-

— f _ _ i t _. I t
- 

~i ,j+l ¼
~~i + l ,j~~l 

- 

~i -1 ,j+l~ 
+

1.

+ 
~i ,j - l  ~~i+ 1 ,j-l 

- 

~i - l - l
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,j+ l ~~i+l ,j+l 
- 

~i -l ,j +l~ 
+ (4.11)

i t  17 —
- 

~i ,j-l~~ i+l ,j- l - 

~i- l  , j -l 1

I t - . - 

.
1

- 

~i+l ,j ~~ i+l ,j ÷ l - 

~~ i+l , j - l~~ 
+

-

~i- l ,jH- 1 ,j÷ l - ‘
~i~~l~~i~~1 1j 

‘

where

~Jf [~~7
2Y ]  = 111. . 

+ 

~IF . . 
+ ~lT . . 

. (4.12)
1 ,3 1 ,3 1 ,3 1 ,.J

3
~~~~ 

~~~~~~~~ 
is expanded in the same manner as for

1 ,3

- 

[~~~7 2 .~ I] -

1 ,3

The Poisson Eq. (4.1) is solved for the ten d ency w i t h

a direc t method developed by Sweet (1971). Th is direct method

solves a finite di fference approx imation to Poisson ’ s equatio n

on a recta ngular domain with Dirich l et boundary conditions.

The fini te di fference form of the boundary conditions are as

fo 11 ows

a) Northern (j J )  and southern (,j=O) boundaries:

= 0 : i=O ,I for j=0 and j=J , (4.13)

— 
__ I t . -

~~~C~ t
(1 1 - 1 ‘j ,~~~, .

I , 1 , 1

-~~~~~~ ~~—- -
~~~~~~

-
~~~~ ~~~~~- ~~ - ~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~ i



= 

~i,J- l  : i=O ,I. (4 . 1 5 )

b) Inflow or eastern boundary (i=I , j=O , j)

~j t . = s i n (~ z~ t )  ÷ c o s ( ~~z~ t ) ,  (4 .16 )

= A .~ co s (~ z4t) - ~sin(~~z4t) , (4.17)

and

+ . i t

= -k 2 
- 

t + ~I ,j+l 
- 

~I ,j ~I ,j-l (4.18)
,3 ,3

where  ~ is the s p e c i f i e d  fr e quency  and k 1~~ is a spec i fi ed

wavenumber structure . Time is discre tized by:

t ~~t , where  ~ = 0,1 ,2 ,3 ,4 ... (4 .19)

A~ and are the y- structure coeffi ci ents of the forc ing

(4.14). These co efficients were determined from the eigen-

solution of the parallel flow m o d e l .  The velocity profile

for d e t e r m i n i n g  A~ and B~ of the inflow boundary condi ti on

was selected from the inflow region of the numerical model .

This profile is described in Cha pt er 1/~~

c) Out flow or western boundary (i=O , j= O , J)

T t-1 t T
Tt — 0 ,j 1 ,3 (4 20
0,j 

— l+C r 1t/1x l+ .
~
.x/(c r 

L t )  ‘

0 0

‘-
I 

t — 4 t

— ~O ,j .1. 4 2 1‘O ,j 
— 

~~~~ 
1t/~.x H-4x /(c 4 t )  ‘
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—

I 

= .~~t;
At + ~~~~ At. (4.22)

The tenden cy T0
t
~ (4.20) and 

~~~~ 
(4.21) were derived from

the analy tical Sommerfeld radiation condition (2.16) and

(2.17), respectiv ely. Since (2.16) is not in the usu al form

of the Dirich l e t boundary condi tion , the direct Poisson

equati on solver , POI SDD , had to be modified . Details of this

modification are given in the Appendix .
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V.  EXPERIMENT I

The investigation of the numerical model of the variable

mean wind comprises two experiments . Experiment I is the

pr inc ipa l  one and w i l l  be d i s c u s s e d  in de ta i l  in th i s  c h a p t e r .

In Experiment II a constant velocity is added to the mean

flow and its results will be discussed in Cha pter VII .

The forecast equation is integrated in time from an

i n i t i a l  s t a t e  of I~ = 0. Tne periodic forcing on the eastern

boundary causes the interior streanfunction to grow and the

integration is continued until the time variation is periodic

cver ywhere w it h the ford nj frequency. By d.~y 7fl t.h~ model

has achieved the fully periodic state and the wave packet

envelope has become quasi - stationary . The forcing frequency

is varied unt il the value which g ives a maximum perturbation

amplitude is found .

The following values are used in Experiment I:

2D = 4000 km . X R
_ X

L 
= 40 125  km , ~ (O ,0) = - 30 m sec ~~

U 0 
= 0, L = 4 3000 km , 4X  = 375 km , ~y = 125 km .

For these parameters the maximum response occurs for a

forcing period of 3 .25 days. It requires several complete

integrations to refine the inflow and outflow bounda ry

conditions for the specified forcing period. Wavenumber (k)

for the inflow vorticit y boundary condition (4.13) wa s

determined by observing the predominant wavelengths near the

inflow region . The radiation phase velocity (
~ 

) in the
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outflow boundary condition (4.15) was similarly determined

by observing the predominant wavelengths near the outflow

region . Since the domain is periodic , the phase velocity is

approximated by the simple relation:

c r = . (5 .1)

Here u is the local frequency which ,in the fully periodic

state ,is equal to the forcing frequency , and k0 is the wave -

number measured near the outflow region . Thus , for Experiment

I , a phase velocity (cr ) of — 13 m sec~~ is used for the

ou t f l ow  Sommer fe ld  r a d i a t i o n  boundary  c o n d i t i o n .

A. RE SULTS

The solu t i nn for the Case I experiment becomes fully

periodic after 70 days. The p field at t=70 days is shown

in Fig. 9. An entire tra in of barotropic waves actually

exists throughout the length of the channel , but the waves

upstream of x = -4 ,500 km and in the outflow region are not

shown in Fig. 9 because of their relatively small amplitude.

The maximum wave amplitude occurs at x = - 1 2 ,750 km and i s

2 and 4 orders of magni tude larger than at the jet maximum

(x= O) and the inflow boundary (x = 14 ,625 km ) , r e s p e c t i v e l y .

Figure 10 shows the lower half of phase angle tilt o*(x ,y)

of the wave disturbance y- structure for various values of

longitude x. We note th at the waves upstream of ap pr oximately

x = -20 ,000 km t i l t  o p p o s i t e  to the mean w i n d  shear , w h i c h  is

necessary for barotropic instability . In fact the tilt near
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tfte inflow bound ary shows relatively weak instability and

this tilt slowly increases , reaching a maximum at x=O where

the jet velocity is maximum. Further downstream , the tilt

slowly decreases and eventually reverses near x = - 2 0 ,000 km.

This behavior is consistent with the growth rates for the

most unstable wavelengths shown in Fig. 8 which were computed

using the parallel flow model. Near the outflow boundary ,

however , the tilt is reversed. This indicates dynamic

stability or a flow of energy from the disturbance back to

the mean flow. Therefore , we observe that the tilt of the

wave disturbance qualitatively adjusts to the local stability

of the mean flow (see Figs. 4-7). We recall that the parallel

flow model can only solve for the most unstable discrete mode ,

thus , dynamic damping is not indicated in Fig. 7(b) for the

outflow region.

Figure 11 shows the envelope of the wave packet ,

evaluated at y = - 7 5 0  km , where the dis turbance amplitude is

large. This envelope <~ ‘(x)> is obtained by recording the

maximum and minimum ~ values that occur at each longitude

over a period of ten days after t h e  s o lution becomes fully

periodic. If a larger time interval were chosen , the envelope

would not change. Note that the maximum amplitude occurs in

the area where the local growth rate becomes zero (see Fig. 8).

The smoothness of the fields in Figs. 9 and 11 indicate that

the radiatio n outflow bound ary condition is working o r ope rl y .
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The ~~~
‘ f i e l ds  for days 83 thr oug h 86 are shown in Figs.

12 through 15 , respectively, to illustrate a time sequence

of the 4~ ba ro t rop i c  wave  t r a i n .  A p e r i o d i c i t y  of 3 . 2 5  days

can be determined by examining the time series at each grid

point (not shown). We also note from this sequence that there

are three maxima of p in the wave structure . One maximum is

at y=O and another is on each wing of the j e t  nea r  y = +750 km .

The maximum on the wing clearly predomin ates. Figure 16 shows

the variation of wavelength , L( x), for y=O and y = + 7 5 0  km

corresponding to the latitudes of the observed three maxima

of ‘p 1 . The disturbance waveleng th is about 4100 km in i t i a l l y

near the inflow boundary . Th e  w av e l en gt h n~ ar  y = +750 km

is larger upstream and smaller downstream ~f x=O than at y=O.

At y = +750 km , the maximum wavelength of 5060 km occurs

approximately 950 km upstream of x=0 while the minimum wave-

length of 3600 km occurs near the  outflow boundary . At y=O ,

the maximum wavelength of 4900 km occurs about 950 km down-

stream of x=0 while the minim um wa v elength of about 4000 km

occurs near x = - 1 3 ,500 km with the wavelength increasing

slowly further downstream to the outflow boundary . The

range of the wavelength is between approximatel y 3600 km and

5000 km , which is nearly the same range of values obtained

for the most uns table wavelengths using the o a r allel flow

model in Chapter III. Figure 17 shows the disturbance phase

speeds , c
r

* ( X )
~ for latitudes y=O and y = ÷750 km where

c r * ( x )  is o b t a i n e d  f rom

—-.._
~~~ 

. . .-~~ - 

So 

,. , .
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c * ( x )  = 
L(x )~ - ( 5 . 2 )r 21r

Since the entire domain is periodic with the forcing

frequency , cr*(x) has the same basic behavior as L(x)

[Fig. 16] for the corresponding latitudes . Namely, upstream

of x=O the disturbance phase velocity is faster on the wings

of the jet than at y O , and downstream of x~ O it is slower.

This behavior of both L(x) and c r*(x) illustrates the tilt

behav io r  of the waves  as they move i n to  and o ut of the baro-

t r o p i c a l l y  u n s t a b l e  reg ion  of the varia ble mean wind. More

results are presented in the next chapter .

The parallel flow mod el is also employed to determine

a r e a s o n a b l y good f o r c i n g  f unc t i on  that  w o u l d  g e n e r a t e

pe r tod i c  wave  d i s t u r b a n c e s  from the e a s t e r n  boundary . Th i s

is accomplished as follows:

Equation (2.14) defines the analytic al form of the

periodic forcing which is appli ed as an inflow boundary

condition in the com plete numerical model , i .e.,

(O ,y, t )  = A( y )~ cos (~ t) - B (y)~~si n(~~t )  -

Equation (4.17) describes the fini te difference a ppr o xi m ~ t i o n

to this forcing. The coefficients A (y) and B(y) of (2 .14)

are obtained from the eigenso l ution determined usi n g the

parallel flow model for the following Bickley jet profile:

~ ( y = O )  = -1 6 m sec~~
d = 962 km

L = 4,600 km

~ 
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This profile is representative of the mean flow near the

i n f l ow  reg ion . Figure 18 shows  the y - s t r u c t u r e  of these

c o e f f i c i e n t s .

Two other  f o rc ing  f unc t i ons , w h i c h  are i ndependen t l y

constructed from the parallel flow model , are a l s o  t e s t e d .

These function sare :

3 .~~ I 

(O ,y,t) = - -
~~ c o s (  ~~Y) sin(~ t), (5.3)

and

~~~~~~ 
(0 ,y,t) = - ~cos( D~~ 

sin(~ t), (5.4)

where D is the half width of the channel (0 = 2 0 0 0  k m ) .

The behavior of the wav e disturbances for all three

forcing functions are essentially the same except in the

vicinity of the inflow boundary . The parallel flow solutions

for the most  uns ta b le  w a v e l e n g t h  show a weak decay rate in

the inflow region (see Fig. 8). This is because the linear

friction decay rate is slightly larger than the weak local

growth rate. We found that this weak decay behavior near

the inflow boundary is achieved in the numer ical model using

— - I. F I

~ 

-, ‘I .~ L L .~ -

L 

rorc i r i g r u f l c L i O n  ~~~~. ‘ + j .  u s e  0 tie ot er two orc in g

functions , (5.3) and (5.4), realizes a weak sec on dary <~~
’>
~~~

near the inflow boundary . Therefore , we found through use

of the parallel flow model that the first forcing fun ction

p r o v i d e d  the be t t e r  i n f l o w  boundary  condi  ti on than the o t ner

two , although no substantial difference occurs even if the

other forcing functions are used .
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B. ENERGETICS

To understand the dynamics of barotropic instability ,

it is helpful to derive the disturbance kinetic energy

equation . A finite difference approximati on form of this

equation is used to compute the energy bud get of the waves.

The linearized momentum equations are :

i~L. + 
~‘ U .  ÷ I 

+ ~~ + v !.Y. +3x Sy 3y
(5 .5 )

- 

~yv ’ = - 1. ~-~— - D fu
’

and

2 .  + ~~ 2_!__ + u ‘~~~~~! + ~~ ~~~~~~~~~ + v I 
+

- 
. 3t ~x ~x ~y

• (5 . 6 )

~yu = ~1 ~2 .  - D fv 
I

After multi plying (5.5) by u ’ and (5.6) by v ’ and ad d ing t h e

resultant equations , we obtain the disturbance kinetic energy

- . e q u a t i o n :

+ ~~k ’  ÷ ~a k ’  
= - u

1
~~~~ _~ . - ~~~~~~~~~~~ — u

1
v

1
~~~~~ +

(5. 7)
• . 1 ~~~~~~~~V 1 3 ( U

1
p

1 ) 1 ~~( v p  ) 
~ I- I

- V - ‘ 
~x 

- 

~y -

w h e r e
1 2

i i  - U v 5 8
~~~~~~~~

=

~~~~~~~~~~

- 2
The d i s tu rbance  f i e l d s  are c o n s i d e r e d  to have a t ime

dependence of the form s in [~ t + ~(x ,y)]. Thus , when (5.7)

is averaged over one period and over one latitudinal domai n

(— D< y.zD), the following energy balance equation is obtained:
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1 

- 
2~~ 

- - u ’ v~~~ - +

(5.9)

- 
, :(u ’ p ’) 

- 2D fk ’~~ = 0.

Term 1 is the advection of k4 by the mean flow ( a ) .  Terms

2, 3, 4 and 5 are the barotropic exchange terms with the

mean flow . Term 6 represents the work done by the - pressure

field. Term 7 is the dissipation term and represents an

energy s i n k . W i t h  the e x c e p t i o n  of term 6 , all the terms ir 1

(5.9) are determinable from the ~ and Y fields . Thus , the

pressure work term is determined as a residual in Eq. (D . 9 ) .

The energy equation is evaluated after the complete numer ical

model ach ieves the fully periodic state.

Figure 19 shows the energy balance as function of

longitude. Clearly, the maximum value of each of the terms

in the energy equation occurs downstream of x=0 . Cu rve ( a )

represents the Reynold s stress term , <(_u 1 v 1 3~~/;y)> , where

the maximum value occurs approximately at x = -10 ,975 km .

C u r v e  (b) represents the advection term , <(-~~ k’/~ x)> ,

k by t.he LuiIäi cu r C f l t .  C u - v e  ( c )  r 2p r c 3 cn t~ thc 1i ~~c~ r

dissipation term <(2D fkI)>. We obser ve that the largest

diss ipatio n takes place near the maxi mum a m p l i t u d e  of the

wave packet envelope , <
~~

(x)> max . Curve (d) rep rese nt s the

p ressu re  work  term , <(1 
~~~~~~~ ))) . It also has a maximum

near <~
)i (x) >max~ The remaining bar otropic terms are not
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included in Fig. 18 because they are 2 to 3 orders of

magnitude smaller than <(— u ’ v ’~~ /~y)> .

Recall that for Experiment I , <p 1 (x )> occurs approxi-

mately at x = -12 ,750 km. We observe that the advection of

k’ by ~ plays a dominant role in the energy balance. Once

the fully periodic state is achieved , the generation of

disturbance energy by barotropic instability essentially

occurs in the region between the <
~~

‘ > ma x (x = -12750 km) and

the jet maximum (x=0). It is in this region that the

s t ronges t  p o s i t i v e  c o r r e l a t i o n s  occur  be tween  u ’ v 1 and

—~~ /~ y in the R e y n t ld c term. Thi s is consistent with the

observe u behavior of the waves (~ ee Figs. 10 and 11 ) since

this strong correlation of u ’ v ’ is dependent on maximum

amplitude of p ’ squarred and the maximum tilt of the wave

structure with the shear of the mean flow -~~ /3y. It is

also from this source region that trans ports a large part

of this generated k’ downs tream to a point centered near

x = -15 ,000 km .

St ronges t  d i s s i p a t i o n  of k’ occurs in the region centered

ne a r <
~~~(X)> m y ~ It is in this region that the strongest

spatial gradients of p ’ occur. The largest values of pressure

work also occur in this region where the pressure work term

is computed as a residual . We note that its location of

occurrence is consistent with the large amplitudes and spatial

gradients of -
~~~

‘ of the region . We also note that < (_ ~~~k h / ; x )  

— ,—~ 
j— --’ —•-—.- ~ .-‘- ~~-.. ________
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vanishes at <~~I ( X ) >  s i n c e  k ’ is  maximum at this longitude .

The disturbance energy balance which is shown in Fig. 19

graphically illustrates the basic energetics involved in

supporting the large amplitudes and sp atial gradients of -
~~~

‘

- a considerable distance downstream of the jet maximum .

Clearly, the Reynold ’ s stress term , < ( u
1

v
1
~~~ ü / 3 y ) > , is the only

dom inant source for disturbance kinetic energy

4
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VI . SIMPLE MECHA NISTIC ANALYTICAL MODEL

A.  FORMULATION

In this chapter we develop a simple mechanistic analyti-

cal model which uses the locally determined parallel flow

solutions. The results of this simple model can be compared

with those of the complete numerical model to obtain some

measure of the adjustment of the transient barotropic waves

to the local stability of the variable mean wind .

The following equation allows for propagation and growth

or decay :

+ C
r
(X) 

~~~~~~~ 
= f l (X )~~J

1 (6.1)

where ~ 1 represents the disturbance streamfunction . cr (x)

is the l oca l  phase  v e l o c i t y  and n ( x )  is the l o c a l  g rowth  r a t e .

We observe that if Cr and n are inde pendent of x , then

Eq. (6.1) is exact , and , in general , should give a reaso na ble

app roximati on to the downstream variation of -~~~~

Let us consider the case where ~ 1 has a s o l u t i on o f th e

t form :

= F I ( x ) e~~~
t
, (6.2)

where ~ is a specified frequency . After substituting (6.2)

into (6.1), we obtain

i -~F’ + c r (x) -
~~~~~

—— = n (x)F 1 . (6.3)
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Rea r rang ing  ( 6 . 3 ) ,  we get

1 dF ’  — n(x) - 6 4— 

cr(X)

wh ich  has a s o l u t i o n  of the form of

Zn [ f ~;] = f  f l ( X ) - U  dx , or 

~~: :~~

I: 

F 1 ( x )  = F~ exp { _ ~ f 
~~r~~

X 
dx~ exp ) f c o  dx~

Some fundamenta l  ins i ght can be g l e a n e d  from ( 6 . 6 ) .  Here

the amplitude of ‘p must be specified at some in i t i a l  point ,

-~ 
- x 0, which could be the inflow point. The local wave number

is a / C r and the s p a t i a l  g rowth  ra te  is n /c r . These  are the

real  and imaginary parts of the wavenumber , if we were to

write u = A  exp (ikx- iwt).

In th is simple analytical model , we are intereste d in

— the growth  and decay of the wave packet. If the oscillatory

behavior of Eq. (6.6) is dropped , the following equation

expresses the envelope of t h e  w a v e  p a c k e t :
- 

x
n ( x )F ( x )  = F

0 ex p / J ~
-_

~
-
~
-
~
- dx . (6 . 7

Equation (6.7) g ives the exponential growth/decay behavior

of a wave  d i s t u r b a n c e  as it travels within its wave packet

envelo pe. This behavior is determined by the integral

e f f e c t s  of the l o c a l  s t a b i l i t y  p r o p e r t i e s  of the mean f l o w .
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B. A P P L I C A T I O N S

Figure 20 compares the envelope for -~~~ ‘ (x) from the

complete numerical solution (Fig. 11) with the F(x) given

by Eq. ( 6 . 7 )  for two v a l u e s  of x 0 . In t h i s  f i gu re  the

amplitude is p lotted against upstream distance from the

initial point x 0. The analytical model -us e s the locally

determined parallel flow growth rates (n) a~~ ohase speeds

(Cr) based on the wavelengths measure d from tne t ompl e te

numerical solutions. Therefore , Eq. (6.7) is ap o lied at

latitude y = + 750 km where the wavelengths ~re m e 3 sured .

The cu rve  for F ( x ) c~~n he ~hift e d in or down by changin g

x 0, but its shape does not change. In Figure 20 all the

curves  have a maximum amplitude at x= - 12 ,750 km w h ere

the local growth rate is zero; however , the simple model

has a lower maximum growth rate and slower damping rates

than the complete numerical model .

The lower portion of Fig. 21 con tains the wavelength

measured from the numerical solution at y = - 750 km . In

the upper  p o r t i o n  of the  d i a g r a m  a r e  t h e  p h a s e  v e l o c i t i e s ,

c~, f rom the p a r a l l e l  f l o w  model  and c r* from the complete

numer ica l  model for the same l a t i t u d e .  He re  c r i s  c o m p u t e d

with the use of the wavelength shown . The two phase speeds

have s i m i l a r  b e h a v i o r  a l t h o u g h  c r* is s h i f t e d  s l i g h t l y

ups t ream and has l a rger  v a r i a t i o n s . We a l s o  no te  tha t  c r*

is gene ra l l y s m a l l e r  than c r e x c e p t  f o r  th e reg i on

-1500 km < x < 6750 km .

— 
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S i m i l a r l y , F i g . 22 contains the wavelength s and phase

speeds for latitude y=O. A gain , the two phase speeds have

similar behavior , but at this latitude c r* is shifted

sl i ghtl y downstream and the differences between phase speeds

is generally less than at y = -750 km. Again we note that

c r* is generally smaller than C r except for the region:

—2250 kin < x ~ 2250  km . This ind icates that both the wave- 3,

length L(x) and the phase velocity c r*(x) between latitudes

y=O and y = - 7 5 0  km are max imum w h e r e  the mean f l o w  is

s t r o n g e s t .

F i g u r e  23 contains the spatial growth rates , m and m~ ,

from the parallel flow mo del and from the complete numerical

m o d e l , res pectively. For the par a l l e l  flow model , we o b ta i n

m = - fl/C r - ( 6 .8)

The value of m * is computed directly from the envelope. We

note in Fig. 23 that m * has a larger maximum than m and the

maximum is shifted slightly downstream from the jet maximum.

Both curves pass through 0 at x = - 1 2 ,750 km wh ich is the

maximum for both wave packet envelo pes. However , m *

shows a much larger damping in the outf low region which can

also be seen in Fig. 20. In fact the parallel flow solution

damps at the rate g iven by the frictional coefficient

divided by the phase speed. This is expected in the baro-

tropically stab le outfl ow region when using the paralle l

f l o w  mo d e l  because this model can onl y give the eigen-
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The s o l u t i o n s  o b s e r v e d  in the numerical model (see

Fig.  10) toward  the o u t f l o w  boundar y  t i l t  in the same s e n s e

as the mean w ind  shear  w h i c h  g i v e s  dynamic  d a m p i n g .  T h i s

t i l t  behav io r  is also indic ated by the divergence of phase

speed in the outflow region between y=0 and y = - 750  km

(see F igs .  21 and 2 2 ) .  T h i s  d y n a m i c  d a m p i n g  a p p e a r s  to

be due to c o n t i n u o u s  spectrum solutions (Case , 1960; Yanai

and Ni t ta , 1968) which are not included in the n ormal mode

s o l u t i o n s  that  are em p loyed  in the s i m p l e  i n te g r a l

[ Eq.  (6 .6 ) ] .  In fac t  we o b s e r v e  that , in the o u t f l o w  r e g i o n ,

the dynami c damping  is l/ t  or f a s t e r , i n c r e a s i n g  near  the

outflow boundar y . In Fig. 23 the m * curve is skewed sligh t l y

to the left with respect to m and the jet maximum . This

could be the result of the tilt structure in the wave lagging

spatially behind the expected value from the local stability

c o n d i t i o n s .  T h i s  would g ive a smaller growth rate on the

upwind side of the jet maximum and a larger growth rate on

the downwind side. This effect is indicated by the asymmetry

of the m~ curve with respect to the in c u r v e  i n t h e  u n s t a b l e

region of the mean wind. However , this is not the onl y effect

involved because the most striking feature of Fig. 23 i s

the fact that the maximum value of m* is si gnificantl y

larger than the m aximum value of m. We have already shown

that the most i mportant dis turbance energy production term

(see Fig. 18) in the energy computations with the numerical

solutions is propor tional to
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This term is the only source term for the parallel flow

model , and it depends on the phase tilt in the disturbance

field. Figure 24 compares the phase tilt of the numerical

model solution , e*’, and that of the most unstable wavelength

of the  p a r a l l e l  f l o w  m o d e l , e
~~
, at  x = 0 , x = 3750 km , and

x = 13125 km. It is e v i d e n t  tha t  at t h e  j e t  m a x i m u m  t h e

- 
- tilt from the numerical model is s ig n i f i c a n t l y  l a r g e r  t h a n

for the tilt from the parallel flow model . This is also

evident but to a lesser degree at x = 3 7 5 0  k m .  T h e s e  res u l t s

! 

are consistent with the larger growth rates for the variable

jet flow . This stro n ger tilt i s  a l s o  i n d i c a t e d by t h e

comparison of the Cr* and  C
r 

c u r v e s  in t he re g i o n  n e a r  an d

slightly upstream of the j e t  m a x i m u m  fo r  latitudes y=O and

y = -750 km (see Figs. 21 and 22). We n o t e  t h a t  at

y = —750 km , Cr* is relatively larger than C r n e a r  t h e j e t

maximum . This difference is sign ificantly reduced and

shifted slightly downstream at y 0 .  We also note that near

the inflow reg ion (x = 13125 km), the chase t i l t  of the

numerical solution lags sligh t l y behind the parallel flow

solution (see Fig. 24c). Apparentl y the downstream varia-

tion of ~ augments the phase tilt which g ives a l a rg e r

growth ra te .

In comparing the parallel flow theory and the complete

numerical model , a source of error could be introduced

74 
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through the zonal resolution . This is because in the former

the zonal variation is specified by a spectral representa-

tion , while in the latter it is resolved by finite differences.

Since the wavelengt h appearing in the complete numerical model

varies between 10 and 13.5 1~x , such resolution normally g ives

a good a p p r o x i m a t i o n  to the exact solution (Haltiner , 1971).

Th us , this error should not be very si gnificant. In order to

confirm this we carried out  an e x p e r i m e n t  in w hi c h a p a r a l l e l

mean flow is specified by the full two - dimensional model

ftnite di fferences of the complete numerical model . The

growth rate and phase speed calculated from the experiment

agree very well with those obtained by the semi-spectral

parallel f l o w  mo d el , the difference being only l- 2 °~. Thus

we may conc lude  that  the d i f f e r e n c e s  be tween  the n u m e r i c a l

solution and the local solution of the parallel flow theory

are genuine and are not due to the differences in the model

r e s o l u t i o n .

C. E F F E C T S  OF L I N E A R  F R I C T I O N

Figure 23 shows that the local growth rate , d e t e r m i n e d

by the parallel flow model , changes sign at x = -12 ,750 km

and t h a t  it approaches the li near friction decay rate near

the outf low region. We also note that the maximum ap l itude

‘ 
of both the analytical and numerical model wave packet

e n v e l o p e s  o c c u r s  a t  the lontitude where n(x) vanishes.

L 

Based on these resu lts , <
~~

> max is expected not only to
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decrease in magnitude but to occur further upstream if the

linear frictional rate is incre ~ised. Likewise , the opp osite

- effect would be e x p e c t e d  if this friction were decreased .

This hypothesis is tested by rerunning Experiment I using

- a larger friction of Df = .25x10 5 sec 1 w h i c h  is  e q u i v a -

lent to e - fo l ding decay time of 4.63 days. We found that

< ‘
~~

>m a x  occurred approximately 1700 km further up stream and

— w i t h  an amp l i t ude  of an order  of m a g n i t u d e  s m a l l e r  ( . 4 I /ice

5 .9)  than fo r  the ori g inal experiment.
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V I I .  E X P E R I M E N T  II

In Experiment II a constant advective speed of

J

- Uo = -5 m sec ~~ is added to the mean f low , o t h e r w i s e  the

parameters are the same as those used in Experiment I. We

hope this modification will shed some light on the adjustment

p r o c e s s  of a f a s t e r  moving wave chain . As in Experiment I ,

the analytical model also uses locally determined parallel

f l ow  g rowth  ra te  (n )  and the phase  sp eed  ( c )  b a s e d  on th e

wave length meas u red from the complete n u meri c a l s o i u t ~~on .

The local p hase speed c is now related to the Doppler -

s h i f t e d  p h a s e  s p e e d  a by C = c + U
0. The max imum ,~~~I res p o n s e

in this experiment is obtained with a forcing ~eriod of 2.5

days .  S ince  the D o p p l e r - s h i f t e d  f requency  may be I,~ri tte n

as ~ = k(c * - U 0) = - kU 0 , this shorter period actually

gives approximately the same D o p p l e r - s h i f t e d  f r e q u e n c y  as

that of Experiment I (where the period is 3. 25 days with

U 0 = 0). Figure 25 shows the ~~~1 f i e l d  f o r  d a y  70 .

Based on the results of the simple analytical model

[Eu . (6.8)], we expect that the constant advective velocity

U 0 w i l l  significantl y reduce the local s patial growth rate

m = - ( 7 .1)
c+U 0

Figure 26 shows the spatial growth rates from the parallel

flow model (m) and from the complete numerical model (m*).

78

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



II—- ~~~~~~~~~~~~~~~~~~~ , — ----- —,-.‘--‘---——.-------.-

~ 

______

In

C
(0

41

C-)
IC

C)

-— - 
- 

-
~~~~~~~~~~~~ -- ~~~~~~~~~~

C

2- I

- (‘4

L... -. - — ~~~~~~~~~~~~~~~~~~ —

1 —

— 
~~~~ 0 0 0  LY~

- - - ----- 

79
- ~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

_ _  

—



—‘----—.—.--- .—‘-.—F.-,------ 
~~~~~ 

~~~~~~~~~~~~~

/
/
/

- (“I C

/ 
I-

/
/ C)
/ C.’/ IC

/

1
’

/ - C C

/

C”) 5-.

IC

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘I:-.-
—

- C
t
‘I I n C
‘ — C)

~t ~‘ IC -..)
C-)

‘ I —
i

-~~ .._I =

\ , 
j— C u

(0 ~<

4 I
— 4 1

4 IC

C)
-IC I

C C
It)

I

S I (C;• I (‘4

I (‘4
Cl

It) (‘4 — C C”)

I I I I I

~~~~~~~ 
O L X ) . ~

80 
--



r~~~~~~~~~~~~~~~~~~

/

Comparing this figure with Fig. 23 , the r e d u c t i o n  i i  both  m

and m * from those of Experiment I is c l e a r . T h i s  re d uc t ion

is evidentl y due to the advective velocity which cau ses the

disturbances of Ex periment II to move approximately

-5 m sec~~ faster than in Ex periment I. Thus , the waves

have less time to grow or damp in response to the local

stability per unit distance traveled . The smaller spatial

growth rate obviously affects the amplitude and spatial

grad ien ts  of ,~~1
• Figure 27 shows the wave packet envelope

<.~ I ( X ) >  of the com plete numerical solution fo r  Ex p e r i m e n t  II.

Figure 28 shows this envelo pe along with the analytical model

envelope F(x) using either x 0 = - 3 7 5  km or x 0 = 3 7 5 - 0 km as

the initial point (no discernible difference is noted between

the use of these ini t i a l  points). Both e n v e l o p e s  a re , as

e x p e c t e d , s i g n i f i c a n t l y  s m a l l e r  than t h o s e  of E x p e r i m e n t  I.

In a d d i t i o n , the re  is l e s s  v a r i a t i o n  in the w a v e i~~n gt h

(3750  km ~ x ~ 4875 km) compared  to E x p e r i m e n t  I. T h i s  i s

also a result of toe faster ohase speed which causes the waves

to have less time to adjust to the local ~(x ,y).

A l t h o ug h  the f a s t e r  p h a s e  s c e e d  of the w a v e s  i i

E x p e r i m e n t  II reduces  the m a g n i t u d e  of g r o w t h  and  d e c a y  rates

and t h e r e f o r e  b r i ngs  the s p a t i a l  g r o w t h  r a te  c u r v e s  of  the

I 

numerical model (m*) closer to that of the parallel flow

model (m), we notice a stronger asymmetry in the m * curve

with respect to x=0 in Fig. 26 compared to Experiment I

(see Fig. 23). In addition to the maximum n~ o c c u r r i n g
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slightly further downstream of the maximum of m(x=0) than in

Experiment I , the cross-over points of the m * and m curves

ex h ib i t  mcre  asymmet ry  in E x p e r i m e n t  II than I . The fi rst

cross -over point occurs approximately at l ong i t u d e  x = 8500 km

and x = 4000 km for Experiments I and II , respectively, w h i l e

the second cross -over point occurs at approximately

x = — 12000 km where the spatial growth rates vanish . As in

Experiment I , we interpret this asymmetry as being due to the

t i l t  s t r u c t u r e  of the w a v e s  l ag g ing behind the expected value

from the local stability condition . The fact that this lag

effect is enhance d by the faster phase speed of the waves in

Experiment II can also be seen in Fi g. 29 where the north -

south p hase tilt s*(x ,y) of the wave d i sturbances for both

experiments are compared at several longitudes . The u n s t a b l e

tilt in Experiment II is weaker upstream and stronger

d o w n s t r e a m  of a p p r o x i m a t e l y  x = -2000 km reflecting the

stronger lag effect of the faster moving waves .

Fi gu re 30 compares the phase tilt of the numerical model

solution , a* , and that of the most unstable wavelength of

t h e  p a r a ll e l  f l o w  m o d e l , 
~~~

, for two l o n g i t u d e s  ( x = 0  and

x = 3750 k m ) .  C o m p a r i n g  t h i s  f i g u r e  w i t h  F i g .  24 of

Experiment I , it is obvious tha t the ap o arent augmentation

of the wave tilt due to the zonal variation of ~i (x ,y) is now

si g n i f i c a n t l y  reduced . This behavior may at least be

par t i a l l y  e x p l a i n e d  by the l a g  e f f e c t  c a u s e d  by the a d v e c t i v e

cu r ren t  U0 , w h i c h  g e n e r a l ly r e d u c e s  the g r o w t h  ra te  in the

vicin ity of the jet maximum .
I
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The lower portion of Fig. 31 shows the wavelength

measured from the numerical solution at y = -750 km . In

the upper portion of the diagram are t h e  phase velocities at

y = -750 km , c* from the complete numerical model and c from

the parallel flow model based on the corresponding numerical

solution wavelength. The two phase speeds agree very closely

upstream of the jet maximum while c k is smaller than c down-

stream of this longitude. Similarly, Fig. 32 contains the

wavelength and phase speeds for latitude y=0. At this

latitude , the two phase speeds have similar behavior through-

out the length of domain with c~ being approximately

- 
- 

1 rn sec ~~ slower than c. Figure 33 shows the wavelength

curves [L(x)] for latitudes y=O and y = -750 km. ~t both

latitudes the maximum wavelength occurs near  the jet m ax imum ,

but the wavelength (and there fore phase velocity ) at

y = -750 km is larger u pstream and smaller dow nstream of

approximately x = —5000 km. As in Experiment I , these

d i f f e r e n c e s  i n c *(x) and L(x) betwee n the two latitudes are

consistent with the observed tilt behavior of the waves.

Other than the foregoing mentioned differences , the

basic behavior of the waves in Experiment II is similar to

that of Experiment I. This includes the tilt of the waves

L 

ond i t s revers al from th at of growth to that of dam p ing

downs t ream of <~~ 1 > , the occurrence of ~~~~~ a consider-max - max
ab le  d i s t a n c e  d o w n s t r e a m  of the j e t  max imum , the g e n e r a l

shape  of the w a v e  p a c k e t  e n v e l o o e , and the l o n g i t u d i n a l

v a r i a t i o n  of the energy b a l a n c e  ( F i a .  3 4 ) .
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V I I I .  SUMMARY AND C O N C L U S I O N S

ifl this work we studied the behavior of waves moving

into  and o ut of a b a r o t r o p ica lly u n s t a b l e  mean w i n d  f i e ld

which varies both in x and y. This mean wind field roughly

simulates the 200 mb easterly jet south of the Tibetan hig h

J during the Northern Hemisphere summer. A rectangular domain

is used with a time periodic forcing on the inflow (east)

boundary and a Sommerfeld radiation condition on the outflow

(west) boundary . This allows the simulation of the propaga —

tion of small amplitude waves through the easterly jet region .

• The v o r t i c i  ty equation on a beta plane is solved with the use

of finite differences , and , when the boundary conditions are

properly adjusted , the barotropic waves move smoothly across

- - the region and out the western boundary . After a certain time

period of numerical integration , t h e  s o l u t i o n  b e c o m e s
- - periodic everywhere with the forcing frequency which is

specified on the eastern boundary . As the waves move

through the jet regime , they grow or decay spatiall y in

resp onse to the local stability of the mean flow , even

though at each poi nt the variation is purely harmonic. The

numer i ca l  r e s u l t s  are com pa red  w i t h  a s i m p l e  m e c h a n i s t i c

analytical model which is developed using the local growth

rate and phase velocity com puted from the parallel flow

theor y .
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Iwo experiments are carried out in this investigation .

- •  • 
The p a r a m e t e r s  used in these experiments are the same ,

except that in Experiment II a constant advective velocity
V 

- of U = - 5 ro sec ~~ is added to the mean f low in order  to

gain a be t te r  unde rs tand ing  of the a d j u s t m e n t  p r o c e s s  of a

• faster moving wave train.

The b a s i c  b e h a v i o r  of the w a v e s  in both e x p e r i m e n t s  is

similar. This includes the following:

1) The maximum amplitude of the waves occurs a

cr~nsiderable distance downstream from the most uns table part

I 
of the jet near where the local growth rate of the p arallel

flow theory vanishes.

2) The tilt structure of the waves and its reversal

- from that of growth to that of damping occurs downstream of

-: : the maximum of the wave packet envelope in response to the

- 
local stability of the mean flow .

•
~~ 

3) The wavelength (and therefore phase vel ocity )

- increases slowly from the inflow boundary to a maximum value

near the jet maximum and then decreases slowl y downstream

reaching a minimum value near the outflow re g i o n .

4) The Reyno ld s s t r e s s  term < ( u l v ~~/3y)> is the

dominant  sou rce  for d i s t u r b a n c e  k i n e t i c  e n e r g y  a n d  th e

4 
aav ect~ ve term <~ - U i K / 3 X ) >  p i ay s a ~~I~~~fl i T T L d~ I L  r u l e

transporting a considerable part of this energy downstream

from the source region.

5) Large spatial damping Occurs in the outflow region

due to the presence of the continuous spe ctrum modes.

~A . 
-- — —
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V In Experiment I where the mean wind vanishes toward

large y, the maximum spatial growth rate in the numerical

model is significantly larger than the spatial growth rate

-~~ of the parallel flow model . Apparently the downstream

variat ion of the mean wind augments the phase tilt of the

waves thus causing an increased g rowth  ra te  as com p a red  w it h

waves in a parallel flow . In Experiment II where the waves

move westward faster due to the presence of a constant

- 5 m s e c ~~ advec t ve zona l  w i n d , the s p a t ia l  growth rate

compu ted  by the numer i c a l  model  is  b r o u g h t  c l o s e r  to tha t

g iv e n  by the pa r a l l e l  flow theory , b ut the asymm e t ry  o f the

-- 

- n u m e r i c a l g r o w t h  r a t e  c u r v e  wi th r e s p e c t  to t h e jet max imum

is enhanced. The reduction of spatial growth and decay rates

is mostly due to the faster phase spe ed which causes the

waves to have less time to grow or damp per u n i t  distance

t r a v e l e d . The  en h a n c e d a s y m m e t ry i s  a pp a r e n t l y du e t o a l a g

effect wherein the ad justmen t of the waves is delayed

s p a t i a l l y .  The l a t t e r  e f f e c t  i s  a l s o  r e f l e c t e d  in the north-

s o u t h  p h a s e  s t r u c t u r e  of the w a v e s  and in the s m a l l e r  v a r i a -

tion of the wavelength as the waves propagate downstream .

The augmentation of the phase tilt by the downstream

• - v a r i a t i o n  is a l s o  signif icantly reduced which may at least

I 
be p d r L i d i l y  eX~~~;~~~~n~~ U by the lag effect.

Recently Pedlosk y (1976) used a simple analytical model

to studj the effect of the down stream variation of a baro-

c l i n i c  c u r r e n t .  The mean f l o w  in h is  model  c h a n g e s  a b r u p t l y
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from a weakly uns table regime with a constant growth rate

to a stable regime downstream. His mo del includes nonlinear

e f fec t s  but it does not p roduce s t r o n g  dynamic  damping  due

to the continuous spectrum modes . This is perhaps because

he did not include the lateral shear of the mean flow. Thus ,

Ped losky  found that  h is  d i s t u r b a n c e s  remain  s u b s t a n t i a l l y

undiminished when they propagate from a locally unstable

region to a locally stable region.

The behavior of the wave disturbances in our study

r e s e m b l e  c e r t a i n  a s p e c t s  of the w a v e s  o b s e r v e d  by

Kr i shnamurti (l97la , b) along the South Asia easterly jet

dur ing  the Nor the rn  H e m i s p h e r e  summer , an d t he  w a v e s  t h a t

were  s i m u l a t e d  by C o l t o n  ( 1 9 7 3 )  in a n o n l i n e a r  model . The

wave disturbances entering upstream of the easterl y jet

regime grow and increase their speed and wavelength as they

a p p r o a c h  the jet maximum. The y then ach i eve  the i r max im u m

amplitude a c o n s i d e r a b l e  d i s t a n c e  d o w n s t r e a m  of the jet

max imum and subsequently decay as they leave the strong jet

regime.

The simple mechanistic analytical model deve l ope u ~ n

this study can crudely approximate the adjust m ent o~ 
t e

moving disturbance to the local stabilit y of a

~iow w i t h i n  the d y r i d m i L d i  ~y u r i S LdUIC r ~~~
- -~ 

•

~~ j : •  -

that this s i m p l e  a p p r o a c h  c o u l d  be - J se ~ ~o s t ~-

instability of other variable mean ~~-ows
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Although this study employs linear equations , it is

possible to estimate qualitatively the n onlinear effect of

the waves on the mean flow . Since the Reynold ’ s s tress term

is the dominant term in the energetics , most of the mean

kinetic energy is removed by the waves on the downwind side

of the jet maximum between where the wave amplitude is

maximum and where the phase tilt of the waves is strongest.

Clearly these synoptic scale waves will affect the amplitude

and p hase of the quasi -stationar y planetary waves which

combine to form the easterly jet over South Asia. Th ese

effects can be studied by including nonlinear effects in

the present model. It may also be interesting to extend the

present model to a 3-dimensional model to study the effect

of vertical shear and  ba roc l inicity .
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APPENDIX

Su b rou ti ne POISOD

Subroutine POISDD is a direct method solver of the

finite difference approximation to Poisson ’s equation

(Sweet , 1971):

v2u(x ,y) = - f(x,y) (1)

for a<x<b

c <y < d

and w i t h  Din chi et boundary condi  t i ons

u(x ,c)  = g 1 ( x )

u(x ,d) = g 2 ( x )  a .<x <b (2 )

u(a ,y) = g 3 (y)  c <y < b

u(b ,y) = g 4 (y)

~4e def ine a gr id on the r e c t a n g l e  ~(x ,y ) :  a <x < b ,

c<y<d } by selecti ng two positive integers M and N , such that

= and ~Y = (3)

and where N must be a power of two , and the points

x. = a + (i-l)~ x i=l , 2 ,1 ( 4 )
y~ = c + (j— l)~ Y j=l , 2 , N+l ,

where i and j refer to the x and y grid points , respectively.

The Poisson equation that is solved by POISDD is g iven

by Eq. (2.10):

72 ~L = - J (~~, v 2
~~’ )  - J ( ’~ ’ ,~~~~) - ~~~~~~~ - Df7

2’~’ 
( 5 )
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wit h boundary condi tions Eqs. (2.11), (2.1 4) and (2.16). The

finite difference form of these equations are given by Eqs.

(4.10), (4.14) and (4.17). Here ~~~ is the finite differ-

ence representation for the tendency , aip /a t , and is the

dependent variable in our Poisson equation. For our

Num er i cal  Mode l , M=l06 and N 32; t is the current time ,

where t = z~ t 2. = 1 ,2.... and ~t in the time step.

Our system of equations meets the requirements of

su b rou ti ne P O I S D D , except for the outflow boundary condi-

tion , Eq. (2.16).

= c _ _ (!~__ ) ( 6 )
~t ~t r0ax ~t

This equation is the Sommerfeld radiation condition (Pearson ,

1974). Clearly, this is not the usual form of D ir i chlet

boundary condition . Therefore , in order to use POISDD in

our  n u m e r i ca l mode l , this subroutine had to be modified

incorporating the radi at i  on ou t f l ow  c o n d i t i o n .  •~as

done by writing Eq. (6) in finite difference form :

t t - A t  t t
1 ,3 1 ,3 = 

2 ,j l~ j
At C

— .  where the finite difference symbols have their usual meaning

in numerical weather prediction. Subscript 1= 1 refers to

the ou t f low boundary , and s u b s c r i p t  i=2 refers to the

column of gr id po in ts  next to th is  boundary . We obse rve

that th is  scheme is backward  in t ime w i t h  upwind space
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differenci ng. Equat ion (7) is convenien tly rewritten such

tha t

t-At t

Tt — 

T1 ,~ + 
12 j

1 ,j 1 + C A t / A x  1 + ~x/(c A t)r0

Since all the in ter ior  po in ts  of the domain must sat is fy  the

non-homogeneous Po isson  equat ion , we , then , use th is cons t ra in t

to. couple the radiat ion boundary cond i t ion  ~Eq. ( 8 ) 1  w i t h  the

interior points , as fo l l o w s :
(9)

t t t t .t
13 j  - 2T2.~ + T

~iL,i + 
T2~~ ÷ 1 — 2T2~~ ~~

T 2 ,j-l — f
AX

2 Ay 2 
— 

2 ,j

The term f 1~~ is the f in i te  d i f f e rence  app rox ima t i o n  to the

right s ide or non-homogeneous part  of Eq. (5 )  or Eq. ( 2 . 1 0 ) .

We mul t ip ly Eq. (9 )  by - ( A y ) 2 , and we ob ta in

T3~~ + 
2T2 ,~ T1 ,~ 

~ + 2’~ T- 

S s 
- 

s 
- 2 ,j+1 ‘2 ,j - 2 ,j-l

(10)
=

where s A X 2 /Ay 2
.

We now com bi ne Eq. (8) and Eq. (10), and we get

- T2~~41 +[2 
+ - 

s(14c~~~t~
] 

T2
t
~ - 

T3
t
~ 

+ 

11
t- At

-T - 2 +2,j+1 — ‘2 ,j’~
’ S[l+C r A t / A X ]

0
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By incor porating Eq. (11) in subroutine POISDD , we

have , thus , coupled the Sommerfeld radiation boundary condi-

tion to the interior domain. Also , by Eq. (8), w e now h ave

a complete set of Dirichlet boundary conditions. The finite

di fference Eqs. (4.10), (4.14) and (4.17), thus , form a

l inear system of equations of dimension (M-l) x (N-i) for

the unknowns 
~~~~ 

2< i<M , 2<j<N. This system is solved in

POISDD by the Buneman variant of the CORF (cyclic odd -even

reduction and factori zati on) algorithm. Buzbee et a l . (1970)

gtves a complete mathematical description of the algorithm.

Sweet (1971) gives a brief description of the subroutine.

A function of two variables , B 1 
~ 

is used in the

numerical model code to represent a two -dimensional array

which provides , on input to POISDO , values of the function

~~~ as well as the specified boundary conditions. On output

from POI SDD , it provides the values of the approximation

T1
t
~ . For our nu mer i ca l mo de l , we approximate the outflow

boundary condition on input to POISDD as follows :

t-A t
B* . = 

T1~~ (12)1 ,j l+C At/Ax

On output fr:m 0

~~:D~

+

we correc t Eq . (12) by 

13- 

l ,j l+AX/(C At)
0

I
1’

~~ 100
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